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Abstract—The performance of HF skywave radar
systems is customarily referred to in terms of
single-hop propagation, a mechanism which pro-
vides illumination of the earth’s surface out to
ranges of around 4000 kilometres. In practice,
the process of ionospheric reflection often supports
multiple hops, though the signals are inevitably
subjected to much greater distortion and contam-
ination. In this paper we address the issue of ad-
equacy of conventional models of multi-hop prop-
agation. We formulate a detailed model which ac-
counts for intermediate surface scattering, and ob-
tain a representation in terms of integrals in �x − �k
space. We proceeed to evaluate the resulting ex-
pressions for several cases of interest. The results
demonstrate that it is vital to understand the com-
plexities of multi-hop propagation if this method of
observation is to be exploited for remote sensing of
the ocean at extreme ranges.

Keywords—HF radar, remote sensing, ionosphere,
radiowave propagation

I. Introduction

HF skywave ’over-the-horizon’ radar (OTHR) ex-
ploits the reflection of radiowaves by the ionosphere
to illuminate the distant earth’s surface, thereby pro-
viding a means for detecting and tracking aircraft
and ships at ranges up to several thousand kilome-
tres. In addition, information about the sea surface
geometry and dynamics is embedded in the radar
echoes, and this information can be manipulated to
yield estimates of a variety of oceanographic and me-
teorological parameters such as significant waveheight
and wind velocity [1]. Of course, the vast cover-
age achieved by OTHR is obtained at the expense
of subjecting the signals to the vagaries of the iono-
spheric medium, leading to distortion and contamina-
tion which often degrades the extracted information
[2].

The zone illuminated by radar emissions which have
undergone a single reflection from the ionosphere ex-
tends typically from a minimum range (’skip’ dis-
tance) of about 1000 km to a maximum of around
4000 km, and for most purposes this constitutes an
upper bound to the range of observability of echoes of
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st. Nevertheless, it is evident that signals scat-
from the earth’s surface in the ’one-hop’ zone
ndergo a second forward ionospheric reflection
minate more distant regions, and so on.
ure 1 shows a backscatter ionogram in which
two- and three-hop echoes are apparent. Ray-
g codes can be used to model these multi-hop
, as illustrated in figure 2, which was generated
two-dimensional code which employs the modi-

aselgrove equations to compute the eikonal rays
gh a model ionosphere, plotting the resulting
tories in the range-height plane.
oes received via these multi-hop propagation
may, in principle, be analysed to provide

ographic information out to ranges in excess of
km, noting that the geometric spreading associ-
with the diverging radar beams results in very

spatial resolution at long ranges. Of course,
crease in size of the radar resolution cells means
he clutter power increases proportionately, so,
echoes from discrete targets, the clutter returns
ecay relatively slowly with range and hence may
ain the clutter-to-noise ratio at a level able to
rt analysis. On the other hand, the additional
ts through the ionosphere cause further degra-
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Fig. 2. Ray fan computed for a model ionosphere, showing
multihop modes

dation of the signal, so the availability of exploitable
echoes is reduced.

In view of these factors, it is often held that, un-
der clement propagation conditions, the exploitation
of multi-hop echoes can proceed in a manner similar
to that employed for one-hop echoes, using essentially
the same algorithms for parameter extraction. It is
the purpose of this paper to demonstrate that the sit-
uation is more complex than appears at first sight,
and that analysis of multi-hop echoes demands a more
sophisticated model of the radar observation process.

II. The radar process model for multi-hop
propagation

A. General formulation

The process model equation for simple one-hop
propagation can be written [3]

s = P̃ R̃M̃R
S S̃M̃S

T T̃w + P̃ R̃M̃R
Nn + m (1)

where
w represents the selected waveform

T̃ represents the transmitting complex, including
transmitters and antennas
M̃S

T represents propagation from transmitter to target
scattering region
S̃ represents all scattering processes in the target re-
gion
M̃R

S represents propagation from target scattering re-
gion to receiver
n represents an external noise source
M̃R

S represents propagation from noise source to re-
ceiver
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general form of the extension to the multi-hop
gation case can be written as a sum over orders
. Immediately we observe that the process must
nt for scattering from areas far removed from
eat circle path; this is illustrated schematically
re 3.
ill be convenient in what follows to refer on oc-
to the number of ground bounces, rather than
mber of ionospheric hops, particularly to facili-
escription of non-reciprocal paths. The process
l is then written :

= P̃
N∑

nB=1

R̃[
nB∏
b=1

M̃
S(b+1)
S(b) S̃(b)]M̃S(1)

T T̃w (2)

+
N∑

nB=1

R̃[
mB∏
b=1

M̃
S(b+1)
S(b) S̃(b)]M̃S(1)

N n + m

ending on the spatial filtering properties of the
tors T̃ , M̃ , R̃ and P̃ , some of these terms may be
essed. Spatial filtering implemented in the signal
ssing operator P̃ will suppress echoes arriving
directions other than those belonging to the sub-
defined by the array steering vector. Additional
l filtering in the vertical plane arises from (i) the
ion radiation patterns of the antenna elements,



embedded in the transmit and receive operators T̃ and
R̃, each of which defines an intensity/sensitivity dis-
tribution on the base of the ionosphere, and (ii) the
propagation operators M̃ , which incorporate the re-
fractive properties of the ionosphere and hence ac-
count for focussing and defocussing. Together, these
factors usually render some terms in the expansion
insignificant, though for specific applications one may
need to verify this.

B. Explicit representation of the operators

In order to proceed with calculations, we need to
choose an explicit mathematical representation for the
operators. The choice depends on the physical domain
in which the radar process is to be studied. For exam-
ple, if the transformation of the polarisation state of
the signal were the only feature of interest, the anal-
ysis could be carried out using the Jones calculus.

It is natural and convenient to adopt a representa-
tion based on integrals over the space and wavevector
variables; for the present we shall suppress the (evolv-
ing) polarisation state of the field and the temporal
dependence of the operators.

We can then write, to second order :

T̃ =
1
4π

PT GT (�k)(.) (3)

M̃�r′
�r =

∫
�dkG(�k′, �r′,�k, �r)(.) (4)

S̃ =
∫

�dkδ(�k′ − �k′.n̂ − �k + �k.n̂)δ(�k′.n̂ + �k.n̂)(.)(5)

+
∫

�dκ1F
(1)(�ki, �ks, �κ1)S( �κ1)(.)

+
∫ ∫

�dκ1
�dκ2F

(2)(�ki, �ks, �κ1, �κ2)S( �κ1)S( �κ2)(.)

R̃ =
1
4π

GR(�k)(.) (6)

where G(�k′, �r′,�k, �r) is the Green’s function for sky-
wave propagation and S(�κ) denotes the directional
wave spectrum of the sea surface. F 1(�ki, �ks, �κ1) and
F 2(�ki, �ks, �κ1, �κ2) denote the kernels for the first and
second order scattering respectively.

C. Construction of the model for two-hop propagation

The generality of the formal model enables it to
incorporate diverse effects including dispersion, gen-
eralised Faraday rotation, tilts and ionospheric distur-
bances and so on. Our focus here is on the relative im-
portance of various contributions to the received field,
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. Theoretical Doppler spectra of sea clutter for var-
us categories of scattering geometry

shall simplify the physics as much as possible
ut compromising the essential aspects. This has
vantage of speeding up the calculations - on a
Pentium PC, the model can track 400,000 rays
ut 10 minutes.
the computations reported here, we adopt a

ical earth, a concentric spherical mirror as our
here, consider only the zeroth and first order
in the expansion for the sea scatter, assume

d-free ocean, and choose a transmit antenna
n with uniform sector gain in both the verti-
d horizontal planes. Receive beams are formed
60◦ assuming element patterns isotropic in az-
with uniform sector gain in elevation. Array

width is, naturally, a function of azimuth. The
rface is assumed to be fully-developed over the
ncy band corresponding to the Bragg resonant
ring mechanism, and isotropic in azimuth.
imately the distribution of energy in the Doppler
in is of central interest, so it is important to
l the scattering from the sea surface with ade-
fidelity. For this purpose we employ the JIN-
code developed in DSTO for remote sensing

hip detection applications. Representative spec-
mputed with JINSCAT for several broad classes
ttering geometry are shown in figure 4.
ile the full Doppler spectrum can be computed
accurate and natural way with our model, the
t paper restricts attention to the total power,
ut a decomposition in Doppler. As shown below,
ns out that computing just the power suffices to
r the key questions posed here; results generated
e higher-dimensional analysis will be published



elsewhere. A further restriction imposed here is to as-
sume collocated transmit and receive antennas; this is
done simply to facilitate comparison with common ex-
perience - the model is equally applicable to arbitrary
bistatic geometries [4].

We shall consider the case of a radar employing two
uniform linear arrays, a transmitting array 10 λ in
length and a receiving array 100λ in length. For a
specified ionospheric height h, and a take-off elevation
angle θ from point �r, the ground and slant ranges to
the ground bounce point �r′ are given by :

α =
Re ∗ sin(π

2 + θ)
Re + h

(7)

β =
π

2
− θ − arcsin(α) (8)

Rgr = 2 ∗ Re ∗ β (9)

Rsl = 2 ∗ Re ∗ sinβ

α
(10)

where Re is the radius of the earth . It is convenient
to employ a mixed coordinate system, wherein �k is
defined relative to the local normal n̂ at �r, while �k′

is defined relative to the local normal n̂′ at �r′. This
facilitates the calculation when the surface scattering
is the primary object of study.

The Green’s function then takes the form

G(�k′, �r′,�k, �r) =
exp(ikRsl)

Rsl
δ(k′−k)δ(�k′.n̂′+�k.n̂) (11)

We note that most of the process model operators
depend on elevation angle, including not only the an-
tenna patterns but also the scattering from the ter-
restrial surface. As shown in Figure 5, the elevation
angles of one-and two-hop modes can be very differ-
ent at a given range, which can lead to substantial
changes in the scattering coefficient when the Bragg
frequency is close to the wave spectrum peak.

III. Coordinate registration for multi-hop
propagation

The visual appearance of the backscatter ionogram
presented in figure 6 suggests that the two-hop mode
extends the range coverage from the one-hop limit at
3500 km to a new maximum of about 5500 km. This
is not strictly correct - the Y-axis in the figures 1
and 6 is the ’group’ or ’slant’ range, and the conver-
sion to ground range must take account of the actual
propagation path. In the case of two-hop modes, the
additional distance travelled in the course of under-
going two ionospheric reflections must be taken into
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. Variation of elevation angle with ground range for
e- and two-hop modes

. Backscatter ionogram showing the transition from
e one-hop regime to the two-hop regime

nt. The relevant relationships and corrections
resented in figures 7 - 9. Figure 7 plots the
(group) range as a function of ground range,
etrised by ionospheric height, for both one- and

op propagation. This information can be used
culate the two-hop range correction factor, as
ted in Figure 8, which shows the range differ-
f two-hop as opposed to one-hop propagation to
n range. Here and in all figures, the horizon for
n ray is indicated by termination of the corre-
ing curve. Finally, it is useful to plot one mode
st the other, as is done in Figure 9, to empha-
he relative (as opposed to the absolute) range
pancy.
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IV. Climatology of multi-hop propagation

The Jindalee radar frequency management system
records backscatter ionograms routinely, twenty four
hours a day, and has done so since 1982 with some
short interruptions. Until 1999 the data was acquired
one beam at a time (there are eight beams spanning
the 90 deg arc to the north-west of Australia) but since
July 1999, when an eight-channel receiver was fitted,
all beams have been collected simultaneously. Typi-
cally the full set of ionograms is updated every 4 min-
utes, covering ranges out to 12,000 kilometres.

This extensive database is ideally suited to the sta-
tistical analysis of the directional, diurnal, seasonal
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unspot number dependence of multihop propa-
. Such an analysis lies beyond the scope of the
t paper, but we note in passing that in prepar-
is paper we examined a single month’s data in
detail and identified distinct patterns in multi-
overage.

V. Results

first property of interest is the extent of the
in azimuth of the radar echoes after diffuse

ring from the first bounce footprint. Figure 10
a histogram of azimuthal angle-of-arrival of 105

riginally transmitted in a broad beam of full
120◦ centred on 270◦. It is apparent that the

ncy is for considerable broadening but with the
ution centred around the axis of the transmit-

eam. This is a consequence of the fact that the
ely-scattered rays are generated with a uniform
ution in azimuth from the first bounce point
ds. Note that this figure reflects only the angle-
ival of the rays, not their amplitudes.
key issue is the magnitude of the contribution

the diffusely-scattered field relative to that of
ecularly scattered field. It is appropriate to use
mon scale when presenting range-Doppler maps
synthesised receiver output, and this was first

mented by using the global maximum over the
es of specularly-reflected and diffusely-scattered
-bounce modes. Later an alternative approach
dopted - we included in the output the returns
ng via singly-scattered one-hop propagation, and
the global maximum over all three families as
aling constant. This approach facilitates a com-
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Fig. 10. A histogram of azimuthal angle-of-arrival at the
receiving array for triple-bounce diffusely-scattered
multihop rays

parison between one-hop and two-hop specularly re-
flected echoes. An example of a ’triptych’ display
of the range-Doppler maps for the three families of
rays is shown in Figure 11. For ease of interpretation,
only 10 transmitted rays are shown, with each yield-
ing a single received ray for the non-diffusely scattered
modes. In contrast, the diffusely-scattered rays spread
more or less uniformly over a substantial range extent.

The relative magnitude of the diffusely-scattered re-
ceived field relative to the specularly reflected two-hop
return is seen to be around -30 dB for the assumed
parameter values. This contribution would fall be-
low the subdominant Bragg line on almost all real-
isations of the sea clutter Doppler spectrum, but is
certainly comparable with much of the second-order
clutter spectrum. It is the latter which is central to
the extraction of most of the detailed sea state infor-
mation sought in HF radar remote sensing.

VI. Conclusion

We have developed a computational model able to
compute the contributions of diffusely-scattered fields
arising from non-specular reflection (bistatic scatter-
ing) at the ground reflection points for multiple-hop
propagation paths. The significance of these echoes is
determined by their magnitude relative to the echoes
received via specular reflection at the bounce points,
and by their spectral content.

Early calculations reveal that the diffusely-
scattered returns lie 30dB below the specularly-
reflected returns for the two-hop propagation case.
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results has important implications for remote
g :
under conditions corresponding to the assumed
eter values, the diffusely-scattered returns are
strong as to bias the Bragg line ratio apprecia-

o information such as wind direction estimated
the Bragg line ratio should not be affected
procedures for estimating sea state and other
surface characteristics, including inversion to

the full directional wave spectrum, may be seri-
corrupted by the presence of diffuse multi-hop
butions
the relative magnitude of the diffusely-scattered
butions is strongly influenced by the antenna
ns, both transmit and receive, with obvious im-
ions for radar design
the contributions from different areas will, in

al, have experienced different phase path mod-
ns as a consequence of the spatial and tempo-
riability of the ionosphere, leading to additional
mination of the desired Doppler spectra
the prospect of reliable remote sensing at ex-
ranges via multi-hop propagation will depend

e development of new techniques able to de-
estimate and perhaps even compensate for dif-
cattering contamination.
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